Water Hammer with Column Separation:
نویسندگان
چکیده
Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water hammer event when the pressure drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). A vapor cavity, driven by the inertia of the parting liquid columns, will start to grow. The cavity acts as a vacuum, a low-pressure point, retarding the liquid columns, which finally starts to diminish in size when the liquid columns change flow direction. The collision of two liquid columns, or of one liquid column with a closed end, moving towards the shrinking cavity, may cause a large and nearly instantaneous rise in pressure. The large pressure rise travels through the entire pipeline and forms a severe load for hydraulic machinery, individual pipes and supporting structures. The situation is even worse: in one waterhammer event many repetitions of cavity formation and collapse may occur. This report reviews water-hammer-induced column-separation from the discovery of the phenomenon in the late 19 century, the recognition of its danger in the 1930s, the development of numerical methods in the 1960s and 1970s, to the standard models used in commercial software packages in the late 20 century. A comprehensive survey of laboratory tests and field measurements is given. The review focuses on transient vaporous cavitation. Gaseous cavitation and steam-condensation are beyond the scope of the report. There are more than 300 references cited in this review report.
منابع مشابه
Introduction to Transient Flow
To this point we have emphasized steady flows, flows that do not change with time at any location in the pipeline system. In this brief chapter we will introduce two general categories of unsteady flow that we call transient flow. All transient flows are transitions, of long or short duration, from one steady flow state to another. Either of these end states may be the rest state. Each transien...
متن کاملExperimental and Numerical Simulation of Water Hammer in Water Conveyance Pipeline and Effect of Surge Tower Pipe in Controlling this Phenomenon
Water hammer is one of the unsteady flows in urban water distribution networks, which has been of great importance due to the damage caused to the pipeline and has always been of interest to researchers. In this study, the phenomenon of water hammer due to the sudden closure of the valve in the downstream end has been investigated in a laboratory and using a numerical model. In the laboratory s...
متن کاملXenon and krypton separation in a chromatographic column packed with granulated nano NaY zeolite
In order to investigate the gas separation ability of a column packed with nanozeolitic material, nano NaY zeolite was synthesized and granulated. These uniform granules packed in a chromatographic column were utilized for separation of Xe and Kr under various operating conditions. With regards to the response peaks obtained from trace injections of Xe and Kr into the column, the first and seco...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کاملSteady-State and Dynamic Simulations of Gas Absorption Column Using MATLAB and SIMULINK
Separation is one of the most important process in all the chemical industries and the gas absorption is the simplest example of separation process which is generally used for the absorption of dilute components from a gaseous mixture. In the present work, a dynamic system of mathematical equation (algebraic and differential) is modeled to predict the behavior of the absorption column using mat...
متن کامل